Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., CHEMISTRY

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
IV	PART-III	CORE	U21CH406	INORGANIC CHEMISTRY-III

Date & Session:06.11.2025/AN Time: 3 hours Maximum: 75 Marks

		1			
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 Marks)</u> Answer <u>ALL</u> Questions.		
CO1	K1	1.	Which of the d-orbitals is having unique shape?		
			a) dx ² -y ²	b) dxz	
			c) dyz	$\mathrm{d})~\mathrm{d}\mathrm{z}^2$	
CO1	K2	2.	The instrument used to n	neasure the magnetic moment of a complex is	
			a) electronic balance	b) Metler balance	
			c) Guoy balance	d) UV spectrometer	
CO2	K1	3.	Which of the following con	mplexes is used for cancer therapy?	
			a) cis-platin	b) trans-platin	
			c) [Cu(NH ₃) ₄] ²⁺	d) [Cu-EDTA] ²⁻	
CO2	K2	4.	The number of pyrrole nu	cleus present in porphyrin is	
			a) 1	b) 2	
			c) 3	d) 4	
CO3	K1	5.	Oxidation number of Fe in K_4 Fe(CN) ₆ is		
			a) +2	b) +3	
			c) 0	d) +1	
CO3	K2	6.	Which of the following is a neutral ligand?		
			a) CN-	b) $C_2O_4^{2-}$	
			c) NO	d) Cl-	
CO4	K1	7.	Which one of the following does not obey EAN rule?		
			a) [Co(NH ₃) ₆] ³⁺	b) Fe (CO) ₅	
			c) Mn ₂ (CO) ₁₀	d) V (CO) ₆	
CO4	K2	8.	The complex responsible for the brown ring is		
			a) [Fe(H ₂ O) ₅ NO] ³⁺	b) $[Fe(H_2O)_5(NO_2)]^{2+}$	
			c) [Fe(H ₂ O) ₅ NO] ²⁺	d) $[Fe(H_2O)_5CN]^{2+}$	
CO5	K1	9.	Wilson's disease is caused by		
			a) deficiency of copper	b) deficiency of iron	
			c) excess of copper	d) excess of iron	
CO5	K2	10.	Oxyhemoglobin is		
			a) tetrahedral	b) square pyramidal	
			c) octahedral	d) none of these	
	·	1	1 ·	•	

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$
CO1	КЗ	11a.	Explain the difference between coordination number and oxidation state with examples from coordination complexes. (OR)
CO1	КЗ	11b.	Apply the IUPAC nomenclature rules to name the following complexes: (i) $[Co(NH3)4Cl2]Br$ (ii) $[Cr(en)_2Cl_2]^+$
CO2	КЗ	12a.	Analyze how the effective atomic number (EAN) rule helps in predicting the stability of metal complexes.
CO2	КЗ	12b.	(OR) Explain the splitting pattern of d-orbitals in an octahedral complex.
CO3	K4	13a.	Analyze the factors that determine whether an octahedral complex behaves as labile or inert.
CO3	K4	13b.	(OR) Assess the role of the trans effect in the synthesis of specific platinum-based anticancer drugs.
CO4	K4	14a.	Analyze how the Effective Atomic Number (EAN) rule help predict the stability of organometallic complexes. (OR)
CO4	K4	14b.	Analyze how the 18-electron rule help predict the stability of organometallic complexes.
CO5	K5	15a.	Use Adamson's rules to assess the differences in photochemical behavior between Cr(III), Co(III).
CO5	K5	15b.	(OR) Evaluate the photochemical isomerization behavior of Pt(II) complexes.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C}{\text{All Questions choosing either (a) or (b)}}$ Answer ALL Questions choosing either (a) or (b)
CO1	КЗ	16a.	Analyze the possible types of isomerism in $[PtCl_2(NH_3)_2]$. Draw the structures for the isomers identified. (OR)
CO1	КЗ	16b.	Using Valence Bond Theory, explain the hybridization and geometry of square planar complexes such as $[PtCl_4]^{2-}$
CO2	K4	17a.	Evaluate the limitations of Crystal Field Theory in explaining the bonding in transition metal complexes. (OR)
CO2	K4	17b.	Using CFSE, justify why d^3 and d^8 octahedral complexes are generally more stable compared to other configurations.
CO3	K4	18a.	Evaluate the mechanism of ligand substitution in octahedral complexes during aquation and base hydrolysis reactions. (OR)
CO3	K4	18b.	Critically evaluate the various theories (σ -bond, π -bond, and steric theories) proposed to explain the trans effect.
CO4	K5	19a.	Explain the polymerization of olefins. (OR)
CO4	K5	19b.	Explain structure and nature of M-L bond in metal carbonyls.
CO5	K5	20a.	Compare metal-centered vs. charge-transfer transitions. (OR)
CO5	K5	20b.	Evaluate the parameters influence the photo-substitution pathway and product distribution.